top of page

36

Chae, S. H.; Kim, M. S.; Kim*, J.-H.; Fortner*, J. D. Nanobubble reactivity: Evaluating hydroxyl radical generation (or lack thereof) under ambient conditions. ACS EST Eng. 2023, 3 (10), 1504-1510.

https://doi.org/10.1021/acsestengg.3c00124

35

Lee1, H. J.; Shin1, M.; Kim, M. S.; Kim, T.; Lee, K. M.; Park, N. B.; Lee, J. C.; Lee*, C. Removal of the red tide dinoflagellate Cochlodinium polykrikoides using chemical disinfectants. Water Res. 2023, 242, 120230.

https://doi.org/10.1016/j.watres.2023.120230

34

Kim*, M. S.; Lim, J. Determination of oxidant dose for control of micropollutants in drinking water treatment plant: A review. J. Korean Soc. Water Wastewater 2023, 37 (2), 61-75. https://doi.org/10.11001/jksww.2023.37.2.61

33

Kim, M. S.; Cha, D.; Lee, S. M.; Jeong, H.; Lee*, C. Prediction of brine evaporation rate in a pond: Development of different models under controlled meteorological conditions and comparative evaluation. Desalination 2023, 551, 116415. https://doi.org/10.1016/j.desal.2023.116415

32

Chen, N.; Lee, D.; Kim, M. S.; Shang, H.; Cao, S.; Park, E. J.; Li, M.; Zhang, L.; Lee*, C. Activation of molecular oxygen by tenorite and ascorbic acid: Generation of high-valent copper species for organic compound oxidation. J. Hazard. Mater. 2022, 440, 129839. https://doi.org/10.1016/j.jhazmat.2022.129839

31

Choi1, J.; Kim, H.-H.; Lee, K.-M.; Chen, Na.; Kim, M. S.; Seo, J.; Lee, D.; Cho, H.; Kim, H.-I.; Lee, J.; Lee, H.;  Lee*, C.  Bicarbonate-enhanced generation of hydroxyl radical by visible light-induced photocatalysis of H2O2 over WO3: Alteration of electron transfer mechanism. Chem. Eng. J. 2022, 432, 134401. https://doi.org/10.1016/j.cej.2021.134401

30

Kim, M. S.; Lee*, C; Kim*, J.-H. Occurrence of unknown reactive species in UV/H2O2 system leading to false interpretation of hydroxyl radical probe reactions. Water Res. 2021, 201 (14), 117338.

https://doi.org/10.1016/j.watres.2021.117338

29

Kang, H.; Lee, D.; Kim, H.-H.; Lee, H.; Kim, M. S.; Lee*, C. Nonradical activation of peroxymonosulfate by hematite for oxidation of organic compounds: A novel mechanism involving high-valent iron species. Chem. Eng. J. 2021, 426 (24), 130743. https://doi.org/10.1016/j.cej.2021.130743

28

Nguyen, N. T. T.; Nguyen, A. Q. K.; Kim, M. S.; Lee, C.; Kim*, J. Effect of Fe3+ as an electron-transfer mediator on the WO3-mediated activation of peroxymonosulfate under visible light. Chem. Eng. J. 2021, 411 (9), 128529.

https://doi.org/10.1016/j.cej.2021.128529

27

Ahn, Y.-Y.; Choi, J.; Kim, M.; Kim, M. S.; Lee, D.; Bang, W. H.; Yun, E.-T.; Lee, H.; Lee, J.-H.; Lee, C.; Maeng, S. K.; Hong*, S.; Lee*, J. Chloride-mediated enhancement in heat-induced activation of peroxymonosulfate: New reaction pathways for oxidizing radical production. Environ. Sci. Technol. 2021, 55 (8), 5382−5392. https://doi.org/10.1021/acs.est.0c07964

26

Nguyen, N. T. T.; Nguyen, A. Q. K.; Kim, M. S.; Lee, C.; Kim, S.; Kim*, J. Degradation of aqueous organic pollutants using an Fe2O3/WO3 composite photocatalyst as a magnetically separable peroxymonosulfate activator. Sep. Purif. Technol. 2021, 267 (14), 118610. https://doi.org/10.1016/j.seppur.2021.118610

25

Cha, D.; Park, S.; Kim, M. S.; Kim, T.; Hong, S. W.; Cho*, K. H.; Lee*, C. Prediction of oxidant exposures and micropollutant abatement during ozonation using a machine learning method. Environ. Sci. Technol. 2021, 55 (1), 709−718.

https://doi.org/10.1021/acs.est.0c05836

24

Kim1, M. S.; Lee1, K.-M.; Lee*, C. Advanced oxidation technologies for the treatment of nonbiodegradable industrial wastewater. J. Korean Soc. Water Wastewater 2020, 34 (6), 445−462. https://doi.org/10.11001/jksww.2020.34.6.445

23

Kim, T.; Cho, J.; Cha, D.; Kim, M. S.; Park, E. J.; Lee, H.-J.; Lee*, C. Cupric ion in combination with hydrogen peroxide and hydroxylamine applied to inactivation of different microorganisms. J. Hazard. Mater. 2020, 400 (20), 123305.

https://doi.org/10.1016/j.jhazmat.2020.123305

22

Kim, M. S.; Lee, K.-M.; Kim, H.-H.; Lee, H.; Kim, D.-W.; Kim, J.-H.; Lee*, C. Accelerated oxidation of microcystin-LR by Fe(II)-tetrapolyphosphate/oxygen in the presence of magnesium and calcium ions. Water Res. 2020, 184 (17), 116172.

https://doi.org/10.1016/j.watres.2020.116172

21

Hasan, N.; Kim, S.; Kim, M. S.; Nguyen, N. T. T.; Lee, C.; Kim*, J. Visible light-induced activation of peroxymonosulfate in the presence of ferric ions for the degradation of organic pollutants. Sep. Purif. Technol. 2020, 240 (11), 116620.

https://doi.org/10.1016/j.seppur.2020.116620

20

Le, N. T. H.; Ju, J.; Kim, B.; Kim, M. S.; Lee, C.; Kim, S.; Choi, W.; Kim, K.; Kim*, J. Freezing-enhanced non-radical oxidation of organic pollutants by peroxymonosulfate. Chem. Eng. J. 2020, 388 (10), 124226.

https://doi.org/10.1016/j.cej.2020.124226

19

Kim, M. S.; Piggott, E.; Zrinyi, N.; Lee, C.; Pham*, A. L. T. Reduction of chlorendic acid by zero-valent iron: Kinetics, products, and pathways. J. Hazard. Mater. 2020, 384 (4), 121269.

https://doi.org/10.1016/j.jhazmat.2019.121269

18

Kim, M. S.; Lee, K.-M., Lee, H.-J.; Kim, T., Lee*, C. Modeling of ozone decomposition and oxidant exposures, and the abatement of micropollutants during ozonation processes. Water Res. 2020, 169 (2), 115230.

https://doi.org/10.1016/j.watres.2019.115230

17

Lee, H.-J; Kim, H.-E.; Kim, M. S.; de Lannoy, C.-F.; Lee*, C. Inactivation of bacterial planktonic cells and biofilms by Cu(II)-activated peroxymonosulfate in the presence of chloride ion. Chem. Eng. J. 2020, 380 (2), 122468.

https://doi.org/10.1016/j.cej.2019.122468

16

Kim1, H.-E.; Lee1, H.-J.; Kim, M. S.; Choi, J.-Y.; Lee*, C. Inactivation of Escherichia coli and MS2 coliphage by Cu(II)-activated peroxomonosulfate in natural water. Membr. Water Treat. 2019, 10 (3), 231−237.

https://doi.org/10.12989/mwt.2019.10.3.231

15

Shin, Y.-U.; Yoo, H.-Y.; Ahn, Y.-Y.; Kim, M. S.; Lee, K.; Yu, S.; Lee, C.; Cho, K.; Kim, H.-I.; Lee*, J. Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode: Multiple pathways for sulfate radical generation. Appl. Catal. B-Environ. 2019, 254 (15), 156−165. https://doi.org/10.1016/j.apcatb.2019.04.060

14

Kim, M. S.; Lee*, C. Ozonation of microcystins: Kinetics and toxicity decrease. Environ. Sci. Technol., 2019, 53 (11), 6427−6435. https://doi.org/10.1021/acs.est.8b06645

13

Kim1, H.-E.; Lee1, H.-J.; Kim, M. S.; Kim, T.; Lee, H.; Kim, H.-H.; Cho, M.; Hong, S.-W.; Lee*, C. Differential microbicial effects of bimetallic iron-copper nanoparticles on Escherichia coli and MS2 coliphage. Environ. Sci. Technol. 2019, 53 (5), 2679−2687. https://doi.org/10.1021/acs.est.8b06077

12

Pham, T.-H.; Lee, K.-M.; Kim, M. S.; Seo, J.; Lee*, C. La-modified ZSM-5 zeolite beads for enhancement in removal and recovery of phosphate. Micropor. Mesopor. Mat. 2019, 279 (7), 37−44. https://doi.org/10.1016/j.micromeso.2018.12.017

11

Seo, J.; Lee, H.; Lee, H.-J.; Kim, M. S.; Hong, S. W.; Lee, J.; Cho, K.; Choi, W.; Lee*, C. Visible light-photosensitized oxidation of organic pollutants using amorphous peroxo-titania. Appl. Catal. B-Environ. 2018, 225 (5), 487-495.

https://doi.org/10.1016/j.apcatb.2017.12.009

10

Kim, M. S.; Lee, H.-J.; Lee, K.-M.; Seo, J.; Lee*, C. Oxidation of microcystins by permanganate: pH and temperature-dependent kinetics, effects of DOM characteristic, and oxidation mechanism revisited. Environ. Sci. Technol. 2018, 52 (12), 7054−7063. https://doi.org/10.1021/acs.est.8b01447

9

Lee*, C.; Kim, M. S.; Kim, H.-H. Comment on “Investigation of the iron−peroxo complex in the Fenton reaction: Kinetic indication, decay kinetics, and hydroxyl radical yields”. Environ. Sci. Technol. 2018, 52 (7), 4481‒4482.

https://doi.org/10.1021/acs.est.8b00062

8

Lee, H.-J.; Seo, J.; Kim, M. S.; Lee*, C. Inactivation of bioflims on RO membranes by copper ion in combination with norspermidine. Desalination 2017, 424 (15), 95−101. https://doi.org/10.1016/j.desal.2017.09.034

7

Kim, M. S.; Kim, H.-H.; Lee, K.-M.; Lee, H.-J.; Lee*, C. Oxidation of microcystin-LR by ferrous-tetrapolyphosphate in the presence of oxygen and hydrogen peroxide. Water Res. 2017, 114 (7), 277−285.

https://doi.org/10.1016/j.watres.2017.02.038

6

Shin, M.; Lee, H.-J.; Kim, M. S.; Park, N.-B.; Lee*, C. Control of the red tide dinoflagellate Cochlodinium polykrikoides by ozone in seawater. Water Res. 2017, 109 (2), 237−244. https://doi.org/10.1016/j.watres.2016.11.050

5

Kim, H.-H.; Kim, M. S.; Kim, H.-E.; Lee, H.-J.; Jang, M.-H.; Choi, J.; Hwang, Y.; Lee*, C. Nanoparticulate zero-valent iron coupled with polyphosphate: The sequential redox treatment of organic compounds and its stability and bacterial toxicity. Environ. Sci.: Nano 2017, 4 (2), 396−405. https://pubs.rsc.org/en/content/articlelanding/2017/en/c6en00502k

4

Lee, K.-M.; Kim, M. S.; Lee*, C. Oxidative treatment of waste activated sludge by different activated persulfate systems for enhancing sludge dewaterability. Sus. Environ. Res. 2016, 26 (4), 177−183. https://doi.org/10.1016/j.serj.2015.10.005

3

Kim, M. S.; Lee, K.-M.; Kim, H.-E.; Lee, H.-J.; Lee*, C. Disintegration of waste activated sludge by thermally-activated persulfates for enhanced dewaterability. Environ. Sci. Technol. 2016, 50 (13), 7106−7115.

https://doi.org/10.1021/acs.est.6b00019

2

Kim, M. S.; Jun, Y.; Lee*, C.; Oh*, J. E. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cem. Concr. Res. 2013, 54 (12), 208−214.

https://doi.org/10.1016/j.cemconres.2013.09.011

1

Kim, M. S.; Kang*, G. The study on evaluating performances of lab scale-advanced A2O with changing system using biofilm process. J. Korean Soc. Water Wastewater 2012, 26 (2), 209−218.

http://www.jksww.or.kr/journal/article.php?code=18863

bottom of page