top of page

41

Park, E. J.; Kim, M. S.; Lee, C. Aqueous Fe(IV) and Cu(III) species from Fenton (-like) reactions: Chemistry and environmental applications. Water Res. 2025, 287, 124169.

https://doi.org/10.1016/j.watres.2025.124169

40

Lim, J.; Park, S.; Ryu, S.; Park, S.; Kim, M. S. Different inactivation mechanisms of Staphylococcus aureus and Escherichia coli in water by reactive oxygen and nitrogen species generated from an argon plasma jet. Environ. Sci. Technol. 2025, 59(9), 3276-3285.

https://doi.org/10.1021/acs.est.4c10363

39

Lee, K.-M.; Kim, J.; Kim, J. Y.; Kim, M. S.; Lee, H.-J.; Seo, J.; Lee, J.; Park, E. J.; Lee, C. Generation of reactive oxidants during nitrate electrolysis: An approach to the simultaneous removal of nitrate and organic contaminants. ACS ES&T Eng. 2025, 5(5), 1122-1130.

https://doi.org/10.1021/acsestengg.4c00820

38

Seo, J.; Kim, H.-H..; Kim, M. S.; Baek, Y.; Lee, C. Effective removal of organic compounds by g-C3N4-AQ/Fe(III) via photocatalytic oxidation and photochemical cycling of iron. J. Environ. Chem. Eng. 2024, 12(6), 114350.

https://doi.org/10.1016/j.jece.2024.114350

37

Cha, D.; Park. S.; Kim, M. S.; Lee, J.; Lee, Y.; Cho, K. H.; Lee, C. Prediction of hydroxyl radical exposure during ozonation using different machine learning methods with ozone decay kinetic parameters. Water Res. 2024, 261, 122067.

https://doi.org/10.1016/j.watres.2024.122067

36

Park, E. J.; Lee, K.-M.; Kim, T.; Lee, D.; Kim, M. S.; Lee, C. Trivalent copper ion mediated dual oxidation in the copper-catalyzed Fenton-like system in the presence of histidine. Environ. Sci. Technol. 2024, 58(24), 10415-10880.

https://doi.org/10.1021/acs.est.4c03689

35

Chae, S. H.; Kim, M. S.; Kim, J.-H.; Fortner, J. D. Nanobubble reactivity: Evaluating hydroxyl radical generation (or lack thereof) under ambient conditions. ACS EST Eng. 2023, 3(10), 1504-1510.

https://doi.org/10.1021/acsestengg.3c00124

34

Lee1, H. J.; Shin1, M.; Kim, M. S.; Kim, T.; Lee, K. M.; Park, N. B.; Lee, J. C.; Lee, C. Removal of the red tide dinoflagellate Cochlodinium polykrikoides using chemical disinfectants. Water Res. 2023, 242, 120230.

https://doi.org/10.1016/j.watres.2023.120230

33

Kim, M. S.; Lim, J. Determination of oxidant dose for control of micropollutants in drinking water treatment plant: A review. J. Korean Soc. Water Wastewater 2023, 37(2), 61-75.

https://doi.org/10.11001/jksww.2023.37.2.61

32

Kim, M. S.; Cha, D.; Lee, S. M.; Jeong, H.; Lee, C. Prediction of brine evaporation rate in a pond: Development of different models under controlled meteorological conditions and comparative evaluation. Desalination 2023, 551, 116415.

https://doi.org/10.1016/j.desal.2023.116415

31

Chen, N.; Lee, D.; Kim, M. S.; Shang, H.; Cao, S.; Park, E. J.; Li, M.; Zhang, L.; Lee, C. Activation of molecular oxygen by tenorite and ascorbic acid: Generation of high-valent copper species for organic compound oxidation. J. Hazard. Mater. 2022, 440, 129839.

https://doi.org/10.1016/j.jhazmat.2022.129839

30

Choi1, J.; Kim, H.-H.; Lee, K.-M.; Chen, Na.; Kim, M. S.; Seo, J.; Lee, D.; Cho, H.; Kim, H.-I.; Lee, J.; Lee, H.;  Lee, C.  Bicarbonate-enhanced generation of hydroxyl radical by visible light-induced photocatalysis of H2O2 over WO3: Alteration of electron transfer mechanism. Chem. Eng. J. 2022, 432, 134401.

https://doi.org/10.1016/j.cej.2021.134401

29

Kim, M. S.; Lee, C; Kim, J.-H. Occurrence of unknown reactive species in UV/H2O2 system leading to false interpretation of hydroxyl radical probe reactions. Water Res. 2021, 201(14), 117338.

https://doi.org/10.1016/j.watres.2021.117338

28

Kang, H.; Lee, D.; Kim, H.-H.; Lee, H.; Kim, M. S.; Lee, C. Nonradical activation of peroxymonosulfate by hematite for oxidation of organic compounds: A novel mechanism involving high-valent iron species. Chem. Eng. J. 2021, 426(24), 130743.

https://doi.org/10.1016/j.cej.2021.130743

27

Nguyen, N. T. T.; Nguyen, A. Q. K.; Kim, M. S.; Lee, C.; Kim, J. Effect of Fe3+ as an electron-transfer mediator on the WO3-mediated activation of peroxymonosulfate under visible light. Chem. Eng. J. 2021, 411(9), 128529.

https://doi.org/10.1016/j.cej.2021.128529

26

Ahn, Y.-Y.; Choi, J.; Kim, M.; Kim, M. S.; Lee, D.; Bang, W. H.; Yun, E.-T.; Lee, H.; Lee, J.-H.; Lee, C.; Maeng, S. K.; Hong, S.; Lee, J. Chloride-mediated enhancement in heat-induced activation of peroxymonosulfate: New reaction pathways for oxidizing radical production. Environ. Sci. Technol. 2021, 55(8), 5382−5392.

https://doi.org/10.1021/acs.est.0c07964

25

Nguyen, N. T. T.; Nguyen, A. Q. K.; Kim, M. S.; Lee, C.; Kim, S.; Kim, J. Degradation of aqueous organic pollutants using an Fe2O3/WO3 composite photocatalyst as a magnetically separable peroxymonosulfate activator. Sep. Purif. Technol. 2021, 267(14), 118610.

https://doi.org/10.1016/j.seppur.2021.118610

24

Cha, D.; Park, S.; Kim, M. S.; Kim, T.; Hong, S. W.; Cho, K. H.; Lee, C. Prediction of oxidant exposures and micropollutant abatement during ozonation using a machine learning method. Environ. Sci. Technol. 2021, 55(1), 709−718.

https://doi.org/10.1021/acs.est.0c05836

23

Kim1, M. S.; Lee1, K.-M.; Lee, C. Advanced oxidation technologies for the treatment of nonbiodegradable industrial wastewater. J. Korean Soc. Water Wastewater 2020, 34(6), 445−462.

https://doi.org/10.11001/jksww.2020.34.6.445

22

Kim, T.; Cho, J.; Cha, D.; Kim, M. S.; Park, E. J.; Lee, H.-J.; Lee, C. Cupric ion in combination with hydrogen peroxide and hydroxylamine applied to inactivation of different microorganisms. J. Hazard. Mater. 2020, 400(20), 123305.

https://doi.org/10.1016/j.jhazmat.2020.123305

21

Kim, M. S.; Lee, K.-M.; Kim, H.-H.; Lee, H.; Kim, D.-W.; Kim, J.-H.; Lee, C. Accelerated oxidation of microcystin-LR by Fe(II)-tetrapolyphosphate/oxygen in the presence of magnesium and calcium ions. Water Res. 2020, 184(17), 116172.

https://doi.org/10.1016/j.watres.2020.116172

20

Hasan, N.; Kim, S.; Kim, M. S.; Nguyen, N. T. T.; Lee, C.; Kim, J. Visible light-induced activation of peroxymonosulfate in the presence of ferric ions for the degradation of organic pollutants. Sep. Purif. Technol. 2020, 240(11), 116620.

https://doi.org/10.1016/j.seppur.2020.116620

19

Le, N. T. H.; Ju, J.; Kim, B.; Kim, M. S.; Lee, C.; Kim, S.; Choi, W.; Kim, K.; Kim, J. Freezing-enhanced non-radical oxidation of organic pollutants by peroxymonosulfate. Chem. Eng. J. 2020, 388(10), 124226.

https://doi.org/10.1016/j.cej.2020.124226

18

Kim, M. S.; Piggott, E.; Zrinyi, N.; Lee, C.; Pham, A. L. T. Reduction of chlorendic acid by zero-valent iron: Kinetics, products, and pathways. J. Hazard. Mater. 2020, 384(4), 121269.

https://doi.org/10.1016/j.jhazmat.2019.121269

17

Kim, M. S.; Lee, K.-M., Lee, H.-J.; Kim, T., Lee, C. Modeling of ozone decomposition and oxidant exposures, and the abatement of micropollutants during ozonation processes. Water Res. 2020, 169(2), 115230.

https://doi.org/10.1016/j.watres.2019.115230

16

Lee, H.-J; Kim, H.-E.; Kim, M. S.; de Lannoy, C.-F.; Lee, C. Inactivation of bacterial planktonic cells and biofilms by Cu(II)-activated peroxymonosulfate in the presence of chloride ion. Chem. Eng. J. 2020, 380(2), 122468.

https://doi.org/10.1016/j.cej.2019.122468

15

Kim1, H.-E.; Lee1, H.-J.; Kim, M. S.; Choi, J.-Y.; Lee, C. Inactivation of Escherichia coli and MS2 coliphage by Cu(II)-activated peroxomonosulfate in natural water. Membr. Water Treat. 2019, 10(3), 231−237.

https://doi.org/10.12989/mwt.2019.10.3.231

14

Shin, Y.-U.; Yoo, H.-Y.; Ahn, Y.-Y.; Kim, M. S.; Lee, K.; Yu, S.; Lee, C.; Cho, K.; Kim, H.-I.; Lee, J. Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode: Multiple pathways for sulfate radical generation. Appl. Catal. B-Environ. 2019, 254(15), 156−165.

https://doi.org/10.1016/j.apcatb.2019.04.060

13

Kim, M. S.; Lee, C. Ozonation of microcystins: Kinetics and toxicity decrease. Environ. Sci. Technol., 2019, 53(11), 6427−6435.

https://doi.org/10.1021/acs.est.8b06645

12

Kim1, H.-E.; Lee1, H.-J.; Kim, M. S.; Kim, T.; Lee, H.; Kim, H.-H.; Cho, M.; Hong, S.-W.; Lee, C. Differential microbicial effects of bimetallic iron-copper nanoparticles on Escherichia coli and MS2 coliphage. Environ. Sci. Technol. 2019, 53(5), 2679−2687.

https://doi.org/10.1021/acs.est.8b06077

11

Pham, T.-H.; Lee, K.-M.; Kim, M. S.; Seo, J.; Lee, C. La-modified ZSM-5 zeolite beads for enhancement in removal and recovery of phosphate. Micropor. Mesopor. Mat. 2019, 279(7), 37−44.

https://doi.org/10.1016/j.micromeso.2018.12.017

10

Seo, J.; Lee, H.; Lee, H.-J.; Kim, M. S.; Hong, S. W.; Lee, J.; Cho, K.; Choi, W.; Lee, C. Visible light-photosensitized oxidation of organic pollutants using amorphous peroxo-titania. Appl. Catal. B-Environ. 2018, 225(5), 487-495.

https://doi.org/10.1016/j.apcatb.2017.12.009

9

Kim, M. S.; Lee, H.-J.; Lee, K.-M.; Seo, J.; Lee, C. Oxidation of microcystins by permanganate: pH and temperature-dependent kinetics, effects of DOM characteristic, and oxidation mechanism revisited. Environ. Sci. Technol. 2018, 52(12), 7054−7063.

https://doi.org/10.1021/acs.est.8b01447

8

Lee, C.; Kim, M. S.; Kim, H.-H. Comment on “Investigation of the iron−peroxo complex in the Fenton reaction: Kinetic indication, decay kinetics, and hydroxyl radical yields”. Environ. Sci. Technol. 2018, 52(7), 4481‒4482.

https://doi.org/10.1021/acs.est.8b00062

7

Lee, H.-J.; Seo, J.; Kim, M. S.; Lee, C. Inactivation of bioflims on RO membranes by copper ion in combination with norspermidine. Desalination 2017, 424(15), 95−101.

https://doi.org/10.1016/j.desal.2017.09.034

6

Kim, M. S.; Kim, H.-H.; Lee, K.-M.; Lee, H.-J.; Lee, C. Oxidation of microcystin-LR by ferrous-tetrapolyphosphate in the presence of oxygen and hydrogen peroxide. Water Res. 2017, 114(7), 277−285.

https://doi.org/10.1016/j.watres.2017.02.038

5

Shin, M.; Lee, H.-J.; Kim, M. S.; Park, N.-B.; Lee, C. Control of the red tide dinoflagellate Cochlodinium polykrikoides by ozone in seawater. Water Res. 2017, 109(2), 237−244.

https://doi.org/10.1016/j.watres.2016.11.050

4

Kim, H.-H.; Kim, M. S.; Kim, H.-E.; Lee, H.-J.; Jang, M.-H.; Choi, J.; Hwang, Y.; Lee, C. Nanoparticulate zero-valent iron coupled with polyphosphate: The sequential redox treatment of organic compounds and its stability and bacterial toxicity. Environ. Sci.: Nano 2017, 4(2), 396−405.

https://pubs.rsc.org/en/content/articlelanding/2017/en/c6en00502k

3

Lee, K.-M.; Kim, M. S.; Lee, C. Oxidative treatment of waste activated sludge by different activated persulfate systems for enhancing sludge dewaterability. Sus. Environ. Res. 2016, 26(4), 177−183.

https://doi.org/10.1016/j.serj.2015.10.005

2

Kim, M. S.; Lee, K.-M.; Kim, H.-E.; Lee, H.-J.; Lee, C. Disintegration of waste activated sludge by thermally-activated persulfates for enhanced dewaterability. Environ. Sci. Technol. 2016, 50(13), 7106−7115.

https://doi.org/10.1021/acs.est.6b00019

1

Kim, M. S.; Jun, Y.; Lee, C.; Oh, J. E. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cem. Concr. Res. 2013, 54(12), 208−214.

https://doi.org/10.1016/j.cemconres.2013.09.011

Copyright © 2021 JBNU Water Treatment Engineering Research (WaTER) Lab. All rights reserved.

bottom of page